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Abstract

This is an expansion and modification of the paper from [6]. We discuss the conver-
gence of locus in the paper [5], which originated from a practice problem for the Chinese
college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are
interested in the limit of a recursive sequence of loci that is built on a special convex com-
bination of vectors involving curves or surfaces. We shall see many interesting graphs of
uniform convergence of sequences generated by parametric curves and surfaces, which we
hope to inspire many applications in computer graphics, and other related disciplines.

1 Introduction and Motivation

In [5], the problem is to find the locus that is determined by two fixed vectors using bisection
theorem. In this paper, we discuss the proposed question of what will happen when we iterate
the locus sequentially, and would like to find the limit of such locus. In short, we shall see a
continuous deformation of an initial shape into a target shape, which is an interesting subject
in computer graphics. We shall see the limit of a recursive sequence of convex combinations of
vectors that involve curves or surfaces.
Original College Entrance Practice Problem: Given a unit circle centered at (0, 0)

and a fixed point at A = (2, 0). Let Q be a moving point on the unit circle C. Find the locus
M which is the intersection between the angle bisector QOA and line segment QA.
It is an easy exercise to verify that the locus of point M is a circle, which we leave as

an exercise for the readers. Moreover, it is natural to imagine when DGS and CAS tools are
available for students in a classroom as a project to explore, they may quickly pose ‘what if’
scenarios. We briefly state the following Exploratory Activity has been discussed in [4] and [5].
We then extend it to what we will focus on in this paper.
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Exploratory Activity ([4] and [5]): Given an ellipse C: [x(t), y(t)] = [a cos(t), b sin(t)], t ∈
[0, 2π] , and a fixed point A = (p, q) /∈ C. Let Q be a moving point on the ellipse (shown in
green in Figure 1). Find the locus of the pointM which is the intersection between the bisector
QOA and line segment QA.

Figure 1. Locus, bisection and an ellipse

We derived that
−−→
OM =

OQ

OA+OQ

−→
OA+

OA

OA+OQ

−→
OQ, (1)

where OQ =
∥∥∥−→OQ∥∥∥ = √a2 cos2 t+ b2 sin2 t and OA =

∥∥∥−→OA∥∥∥ = √
p2 + q2. We see that

the parametric equation for the locus M (t) can be plotted directly from Eq. (1) (see the red
curve in Figure 1 above) with the help of a computational tool. It should cause no confusion

throughout the paper that when t ∈ [0, 2π] , we often use −−→OM to denote the vector
−−−−→
OM (t),

OQ stands for the magnitude of
∥∥∥−−−−→OQ (t)

∥∥∥ when Q (t) is a parametric curve, and OA stands for
the magnitude of

∥∥∥−→OA∥∥∥ if A is simply a point.
It is natural to extend our exploration and ask what would happen to the plot of

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

OQn
OA+OQn

−→
OA+

OA

OA+OQn

−−→
OQn, (2)

when n → ∞, where −−→OQn =
−−−→
OMn, OQn = OMn =

√
xn(t)2 + yn(t)2, n ∈ Z+, and OA =√

p2 + q2. Consequently, consider the following extension with extra weights of coeffi cients r
and s as follows: We therefore, consider the following scenario with extra weights of coeffi cients
r and s as follows:

Theorem 1 Given a non-zero closed curve C: [x(t), y(t)], and a non-zero fixed point A =

(p, q) /∈ C. Let Q be a moving point on C. For r, s > 0, and
−−−→
OM1 =

s·OQ
r·OA+s·OQ

−→
OA +

r·OA
r·OA+s·OQ

−→
OQ, if we write the Eq. (2) as

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn. (3)

Then
−−−−→
OMn+1 converges for some t ∈ [0, 2π] when n → ∞ if and only if either OQn =√

x2n (t) + y2n (t) + z2n (t)→ 0 or
−−−−−→
OMn (t)→

−→
OA for some t ∈ [0, 2π] when n→∞.
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Proof: First, if
−−−−→
OMn+1 converges for some t ∈ [0, 2π] when n → ∞, then

−−−−−→
MnMn+1 =−−−−→

OMn+1 −
−−−→
OMn → 0 for some t ∈ [0, 2π] when n→∞. Moreover, since
−−−−−→
MnMn+1 =

−−−−→
OMn+1 −

−−−→
OMn

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

r ·OA
r ·OA+ s ·OQn

−−−→
OMn −

−−−→
OMn

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

−−−→
OMn

(
r ·OA

r ·OA+ s ·OQn
− 1
)

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

−−−→
OMn

(
−s ·OQn

r ·OA+ s ·OQn

)
.

=
s ·OQn

r ·OA+ s ·OQn

(−→
OA−−−−→OMn

)
. (4)

Hence,
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
converges for some t ∈ [0, 2π] if eitherOQn =

√
x2n (t) + y2n (t) + z2n (t)→

0 or
−−−−−→
OMn (t)→

−→
OA for some t ∈ [0, 2π] when n→∞. The other direction is clear. �

We describe a special convex combination of vectors in the vector space Rn below.

Definition 2 Given a finite number of vectors v1, v2, ... vn in Rn, a conical combination of
these vectors is vector of the form

α1v1 + α2v2 + ...αnvn,

where αi > 0, i = 1, 2, ...n. A set of conical combination of vectors is called a convex combi-
nation [2] if in addition the coeffi cient satisfying the following condition

n∑
i=1

αi = 1.

In this paper, we shall discuss a special weighted convex combination of vectors that involve
a recursive sequence. For example, if

−−−−−−−→
OMn+1 (t) =

[
xn+1(t)
yn+1(t)

]
=

α1
α1 + α2 + α3

v1 +
α2

α1 + α2 + α3
v2

+
α3

α1 + α2 + α3

−−−−−→
OMn (t), (5)

then α1, α2 and α3 are positive real numbers. Using the scaling techniques, without loss of
generality, we assume α1, α2 and α3 are real numbers in (0, 1). We shall see in later proofs that

the coeffi cient α3 is irrelevant to the convergence of limn→∞
−−−−−−−→
OMn+1 (t).

2 2D iterations

2.1 One curve and one fixed vector

For the rest of the paper, we assume the fixed point A is not on the original curve C. In view
of the Theorem (1), we further extend the knowledge of uniform convergence of sequences of
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functions, which students learn in Advanced Calculus. We begin with the domain D = [0, 2π],
and {Mn : D → R2} being a sequence of functions, and note that since the metric space R2 is
complete, which means that every uniformly Cauchy sequence Mn is convergent. We consider
the following:

Definition 3 Suppose D = [0, 2π], and {Mn : D → R2} is a sequence of functions. If we
write Mn (t) = [xn(t), yn(t)] , with t ∈ [0, 2π] , {Mn (t)) is said to converge uniformly to
M∗(t) = [p(t), q(t)] if ∀ε > 0, ∃ a positive integer N = N(ε) (i.e. N depends only on ε in this
case) such that the Euclidean distance between two points, Mn (t) and M∗(t), ‖Mn(t)−M∗(t)‖
or ‖Mn (t)M

∗(t)‖ , is arbitrarily small:

‖Mn(t)−M∗(t)‖ = ‖Mn (t)M
∗(t)‖ =

√
(xn(t)− p(t))2 + (yn(t)− q(t))2 < ε.

Similarly, the sequence {Mn (t)) is said to converge uniformly to a point A = (p, q) if ∀ε > 0,
∃ a positive integer N = N(ε) such that ‖Mn (t)A‖ is arbitrarily small. In other words,

‖Mn (t)A‖ =
√
(xn(t)− p)2 + (yn(t)− q)2 < ε

for all n ≥ N and all t ∈ [0, 2π] . Intuitively, there exists a positive integer N, such that the
parametric curves Mn(t) will shrink to the point A for all n ≥ N and all t ∈ [0, 2π] .

Definition 4 Suppose D = [0, 2π], and {Mn : D → R2} is a sequence of functions. If we write
Mn (t) = [xn(t), yn(t)] , with t ∈ [0, 2π] , {Mn (t)) is said to be uniformly Cauchy if for every
ε > 0, there exists a positive integer N such that the inequality

‖Mn (t)Mm (t)‖ < ε

holds whenever m ≥ N, n ≥ N , and for all t ∈ D. We take it for granted in this paper that the
sequence {Mn : D → R2} converges uniformly to another M on D if and only if, the sequence
{Mn) is uniformly Cauchy.

Remarks:

1. We remark that definitions in (3) and in (4) can be extended to Rn.

2. We remind readers to distinguish the difference between uniform convergence versus point-
wise convergence.

3. Recall our original bisection problem (1) is such that M1A
M1Q0

= AB
OB

= AB
M1B

= OA
OQ0

= k1(t),

where the convergence in the case of (2) is a homothety (see [3]). We may denote the
following:

MnA

MnMn−1
= kn(t)

(
=

OA

OMn−1

)
, (6)

where n = 1, 2, ..., and M0 = Q, which is a point on the given curve C.
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4. On one hand, we usually prove how a sequence of parametric curves {Mn (t)}∞n=1 converge
uniformly directly in this paper. On the other hand, we note that {Mn (t)} is a sequence
from D = [0, 2π] to R2, and since R2 is a complete metric space, if one can show that
{Mn (t)} is a uniformly Cauchy sequence, then {Mn (t)} is uniformly convergent. Instead
of proving that {Mn (t)} is a uniformly Cauchy sequence theoretically in this paper,
with the help of a CAS, we often demonstrate that the graph of square distance function
fn(t) = sup (‖Mn (t)−Mn−1 (t)‖)2 or gn(t) = sup (‖Mn (t)− A‖)2 , for all t ∈D = [0, 2π],
is decreasing to 0 uniformly, and use such observation to conjecture that {Mn (t)}∞n=1
converges uniformly.

The next observation is natural:

Theorem 5 Let C be a given simple closed curve [x0(t), y0(t)], A = (p1, q1) /∈ C. For r, s ∈
(0, 1) and r 6= s, we let

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ,

where Q is a moving point on C. Now for n ∈ Z+, we consider
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn, (7)

where Qn is a moving point on (xn(t), yn(t)) , and
−−−−−→
OQn (t) =

−−−−−→
OMn (t). Then

−−−−−→
OMn(t) →

−→
OA

uniformly as n→∞ for all t ∈ [0, 2π],
−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly to 0 for all t ∈ [0, 2π].

Consequently, {Mn (t)}∞n=1 converges to A uniformly.

Proof: First, if r = s and r, s ∈ (0, 1) , we refer to Theorem (1) for discussion. Now, for
r, s ∈ (0, 1) and r 6= s,

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ,

we first observe that Mn = Qn = (xn(t), yn(t)) for n ≥ 1, and
−−−→
OM2 =

[
x2(t)
y2(t)

]
=

s ·OQ1
r ·OA+ s ·OQ1

−→
OA+

r ·OA
r ·OA+ s ·OQ1

[
x1(t)
y1(t)

]
=

s ·OQ1
r ·OA+ s ·OQ1

−→
OA+

r ·OA
r ·OA+ s ·OQ1

(
s ·OQ

r ·OA+ s ·OQ
−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ

)
=
−→
OA

(
(rs) [(OA) (OQ) + (OA)OQ1] + s2 (OQ) (OQ1)

(r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
+
−→
OQ

(
r2 · (OA)2

(r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
.

By induction, we see

−−−−→
OMn+1 =

−→
OA

(
(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)− rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
+
−−→
OQn

(
rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
(8)
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Since 0 < r < 1,

rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ) → 0.

Furthermore, since
−−−−→
OMn+1 = a

−→
OA + b

−−→
OQn, where a and b are coeffi cients of

−→
OA and

−−→
OQn

respectively as seen in Eq. (8) with a, b ∈ (0, 1) and a+b = 1, this implies that
−−−−−−→
OMn+1(t)→

−→
OA

as n→∞ for all t ∈ [0, 2π] . Since three points,Mn−1(t), Mn(t) andA are collinear, andMn(t) is

in the interior ofMn−1(t) andA, we see
−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly to 0 for all t ∈ [0, 2π],

which can be shown that
−−−→
Mn(t) is uniformly Cauchy, and hence {Mn (t)}∞n=1 converges to A

uniformly. �
We remark that the uniform convergence of {Mn(t)}∞n=1 to the point A does not depend on

the curve C.

Example 6 We consider the curve C of [a cos(t), b sin t], A = (p1, q1) /∈ C, For the convex
combination of r and s, we let[

x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

[
p1
q1

]
+

r ·OA
r ·OA+ s ·OQ

[
x0(t)
y0(t)

]
,

and
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn.

If we choose a = 5, b = 4, and convex combination for r = 1
3
, s = 2

3
, A = (3, 2) , then {Mn (t)}∞n=1

converges to A uniformly. (See Figure 2)

Figure 2. Uniform converges
to a point.

Exercises: (1) If we use r = s in Example (6), then we leave it to the readers to verify
that gn(t) = (‖Mn (t)− A‖)2 does not converge uniformly to 0. In fact, the maximum value
of gn(t) is the distance (OA)

2 at some t ∈ (0, 2π). (2) If we replace C by [a sin t, b sin t cos t],
a = 5, b = 4, r = 1

3
, s = 2

3
, A = (3, 2) in Example (6), then we may conjecture that {Mn (t)}∞n=1

does not converge to A uniformly by observing the graph of fn(t) = ‖Mn (t)−Mn−1 (t)‖ does
not converge uniformly to 0.
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2.2 One curve and two fixed vectors

We consider convex combinations of three vectors below: Let C be a given closed curve
[x0(t), y0(t)], A = (p1, q1) and B = (p2, q2) be two distinct points not lying on C. If Q is a
moving point on C, and r1, r2, and r3 are real numbers in (0, 1) . For n ∈ Z+ ∪{0}, we consider

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

−−−→
OMn,

where M0 (t) = Q (t) ∈ C, and Mn(t) = Qn (t) is a moving point on (xn(t), yn(t)) . We are
interested in limn→∞

−−−−→
OMn+1.

2.3 Generating sequence of shrinking curves due to convex combi-
nations

Since the plot of the sequence
−−−−→
OMn+1 in (9), where r1, r2, and r3 are distinct real numbers in

(0, 1) , is a convex combinations of vectors
−→
OA,
−−→
OB and

−−−→
OMn, the plot of [xn+1(t), yn+1(t)] is

generated by the following steps:

1. Connect three points of Mn = (xn(t), yn(t)) , A and B to form the triangle 4MnAB.

2. We view the point Mn as the convex combination of three points A,B and Mn−1, for
n ∈ Z+, where M0 = Q, which is a point on the curve C. Since r1, r2, and r3 ∈ (0, 1) , the
point Mn (t) belongs to the interior of the triangle 4Mn−1AB for each t ∈ [0, 2π] , and
n ∈ Z+, see [2].

3. We shall see later in the proof of the Theorem (8) that the coeffi cient r3 will not affect
the final plot of

−−−→
OMn when n→∞.

4. The convergence of
−−−→
OMn will only depend on

−→
OA and

−−→
OB, and will not depend on the

curve C.

Example 7 We use closed curve C to be [a sinu, b sinu cosu], a = 5, b = 4, A = (3, 4) , B =
(2, 5) , r1 =

1
2
, r2 =

1
3
, and r3 =

1
6
for demonstrating how [x2(t), y2(t)] is generated from

[x1(t), y1(t)] . The graphs of [x1(t), y1(t)] and [x2(t), y2(t)] can be seen in black and purple re-
spectively in Figure 3 (d) respectively.

• Figure 3(a) shows when t = 0,the plot of [x2(t), y2(t)] has not been generated yet.

• Figure 3(b) shows when t ∈ [0, 0.9106] , the plot of [x2(t), y2(t)] is being generated in this
interval and will be in the interior of 4M1AB for each corresponding t.

• Figure 3(c) shows when t ∈ [0, 3.1871] , the plot of [x2(t), y2(t)] is being generated in this
interval and will be in the interior of4M1AB for each corresponding t, and finally, Figure
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4(d) shows when t ∈ [0, 2π] , the plot of [x2(t), y2(t)] is smaller than that of [x1(t), y1(t)] .

Figure 3(a), t = 0.
Figure 3(b),
t ∈ [0, 0.9106] .

Figure 3(c),
t ∈ [0, 3.1871] . Figure 3(d), t ∈ [0, 2π] .

Theorem 8 Let C be a given closed curve [x0(t), y0(t)], A = (p1, q1) and B = (p2, q2) be two
non-zero distinct points not lying on C. If Q is a moving point on C, and r1, r2, and r3 are
positive real numbers in (0, 1), we let

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

r1 ·OQ
r1OQ+ r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQ+ r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQ+ r2OA+ r3OB

−→
OQ.

We further consider

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

[
xn(t)
yn(t)

]
, (9)
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where Qn is a moving point on (xn(t), yn(t)) . Then {Mn (t)}∞n=1 converges uniformly to a point
D, which lies on the line segment AB. Consequently,

−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly

to 0 for all t ∈ [0, 2π]. We remark that the coeffi cient r3 ∈ (0, 1) will not affect the location of
the convergence {Mn (t)}∞n=1.

Proof: First, we observe

−−−→
OM2 =

[
x2(t)
y2(t)

]
=

r1 ·OQ1
r1OQ1 + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQ1 + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQ1 + r2OA+ r3OB

(
r1·OQ

r1OQ+r2OA+r3OB

−→
OA+ r2·OA

r1OQ+r2OA+r3OB

−−→
OB

+ r3·OB
r1OQ+r2OA+r3OB

−→
OQ

)

=
−→
OA

(∥∥∥−→OA∥∥∥)+−−→OB (∥∥∥−−→OB∥∥∥)+−→OQ( r23 (OB)
2

(r1OQ1 + r2OA+ r3OB) (r1OQ+ r2OA+ r3OB)

)
,

It follows from induction that

−−−−→
OMn+1 =

−→
OA

(∥∥∥−→OA∥∥∥)+−−→OB (∥∥∥−−→OB∥∥∥)
+
−→
OQ

(
rn3 (OB)

n

(r1OQn + r2OA+ r3OB) · · · (r1OQ1 + r2OA+ r3OB) (r1OQ+ r2OA+ r3OB)

)
.

Since 0 < r3 < 1, we see rn3 (OB)
n → 0, and

−−−−→
OMn+1 → m

−→
OA+ (1−m)−−→OB,

when n → ∞, where m =
∥∥∥−→OA∥∥∥ , and 1 − m =

∥∥∥−−→OB∥∥∥ . Let D = m
−→
OA + (1−m)−−→OB,

then D ∈ AB, and
−−−−→
OMn+1 converges uniformly to

−−→
OD. Hence

−−−−→
OMn+1 converges uniformly

to
−−→
OD, where D ∈ AB. In view of the observations from section (2.3), we see {Mn (t)}∞n=1

converges uniformly to the point D, which lies on the line segment AB. Moreover, it is clear
that

−−−−−−−−−→
Mn−1(t)Mn(t) =

−−−→
OMn −

−−−−→
OMn−1 converges uniformly to 0 for all t ∈ [0, 2π], �

Computationally, we assume
[
xn+1(t)
yn+1(t)

]
→ F =

[
p
q

]
, then the norm of the vector,∥∥∥∥[ xn+1(t)yn+1(t)

]∥∥∥∥, converges to ‖F‖ =√p2 + q2, and we have

(
1− r3OB

r1 ‖F‖+ r2OA+ r3OB

)[
p
q

]
=

r1 ‖F‖
r2OA+ r3OB + r1 ‖F‖

−→
OA+

r2OA

r2OA+ r3OB + r1 ‖F‖
−−→
OB

[
p
q

]
=

 1(
r1‖F‖+r2OA

r1‖F‖+r2OA+r3OB

)
( r1 ‖F‖

r2OA+ r3OB + r1 ‖F‖
−→
OA+

r2OA

r2OA+ r3OB + r1 ‖F‖
−−→
OB

)

=

(
r1 ‖F‖

r1 ‖F‖+ r2OA

)
−→
OA+

(
r2OA

r1 ‖F‖+ r2OA

)
−−→
OB

= m
−→
OA+ (1−m)−−→OB, (10)
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where m = r1‖F‖
r1‖F‖+r2OA . To find the point F, it amounts to solve two equations in (10) for two

variables p and q in terms of t; however, due to too many parameters that are involved, we are
unable to express the solutions p and q in explicit form. Instead, we do the followings:

1. If r1, r2, and r3 are real numbers in (0, 1), we substitute the solutions p and q obtained
(10) into the line equation

←→
AB, we get the following equation from Maple after setting

the length of computations to be 20,000 lines:

(q − q2) p1 + (q1 − q) p2 − p (q1 − q2)
p1 − p2

= 0

=⇒ qp1 − pq1 + pq2 − qp2 − p1q2 + p2q1
p1 − p2

= 0,

⇒ q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1
p1 − p2

= 0. (11)

2. Assume p1 6= p2 we deduce the numerator of (11) be to the following:

q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1 = 0,

q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1
p1 − p2

= 0,

q − p
(
q1 − q2
p1 − p2

)
− p1q2 − p2q1

p1 − p2
= 0.

On the one hand, we see F = (p, q) lies on the line of

y =

(
q1 − q2
p1 − p2

)
x+

p1q2 − p2q1
p1 − p2

. (12)

On the other hand, we note that the line
←→
AB is with the slope q1−q2

p1−p2 and passes through
the point (p1, q1) :

y − q1 =

(
q1 − q2
p1 − p2

)
(x− p1)

y = q1 +

(
q1 − q2
p1 − p2

)
(x− p1)

=

(
q1 − q2
p1 − p2

)
x+

p1q2 − q1p2
p1 − p2

. (13)

We see (12) coincides with (13) and hence F lie on line segment AB.We remark that when
solving p and q symbolically if r1, r2 and r3 are also considered to be variables, it is not possible
to express using p and q due to too many unknowns when using [1], but numerical computations
do show that the point (p, q) lie on the line segment AB. We use the following Example for
demonstration.
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Example 9 We consider the closed curve C1 with the parametric equation, [x0(t), y0(t)] =
[cosu(a − cos(bu)) + 1, sinu(a − cos bu))], A = (p1, q1), B = (p2, q2), and Q is a moving point
on C1. We let r1, r2, and r3 be three distinct real numbers in (0, 1) , and

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

[
xn(t)
yn(t)

]
.

If we pick a = 5, b = 4, p1 = 3, q1 = 4, p2 = 2, q2 = 5, and r1 = 1
2
, r2 =

1
3
, and r3 = 1

6
. Then

we see
lim
n→∞

{Mn (t)}∞n=1 = (2.60516252, 4.39483748) ,

see Figure 4(a) below for the convergence. In view of (10), we note that the convergence does not
depend on the value of r3.We also remark that convergence to the point (2.60516252, 4.39483748)
is irrespective to the curveC1 we pick. For example, if we replaceC2 by [a sinu, b sinu cosu] , and
use the same a, b, pointA, and pointB, we shall get the same convergence for limn→∞ {Mn (t)}∞n=1 =
(2.60516252, 4.39483748) , (see Figure 4(b)). Similarly is true if we replaceC3 by

[
4a cosu (sinu)2 cosu, 4a cosu (sinu)2 sinu

]
,

see (Figure 4(c)).

Figure 4(a). Convergence
for C1.

Figure 4(b). Convergence
for C2.

Figure 4(c). Convergence
for C3.

2.4 Uniform convergence using geometric constructions

In view of the Theorem (8) and observation from section (2.3), C is a non-zero closed curve,
A and B are two non-zero distinct fixed points, not lying on C, and Mn(t) is in the interior
of the triangle of 4Mn−1 (t)AB for each t ∈ [0, 2π]. We see the distance between Mn(t) =
[xn(t), yn(t)] and Mn−1(t) = [xn−1(t), yn−1(t)] is decreasing and converges to 0 when n → ∞,
for all t ∈ [0, 2π] . In other words, the square distance function

fn(t) = (xn(t)− xn−1(t))2 + (yn(t)− yn−1(t))2

converges to 0 uniformly. Consequently, we see {Mn(t)}∞n=1 converges to a point lying on the
line segment AB. In other words, if the graphs of fn(t) does not converges to 0 uniformly, then−−−−→
OMn+1 does not converge uniformly.
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Suppose we adopt the Example in the section (2.3), we depict the pair functions {f3(t), f4(t)}
and {f4(t), f5(t)} in the following Figures 5(a) and 5(b) with red and blue colors respectively:

Figures 5(a). Plots of
{f3(t), f4(t)} .

Figures 5(b). Plots of
{f4(t), f5(t)}

In view of the plot of f5(t) (the blue in Figure 5(b)), we can see that if we pick ε = 0.0005,
for n ≥ 5, fn(t)→ 0 uniformly for all t ∈ [0, 2π] . In view of the Example (9), the speed of the
uniform convergence of limn→∞ {Mn (t)}∞n=1 = (2.60516252, 4.39483748) is rather fast.

2.5 Iterations on one curve, and two vectors on two respective
curves

Now, we consider the plots of convex combinations of three vectors, one vector is iterated one
curve, and two vectors are on two respective curves.

Theorem 10 Let C be a given non-zero closed curve [x0(t), y0(t)], D and E be two additional
distinct closed curves of [d1(t), d2(t)] and [e1(t), e2(t)] respectively. Furthermore, we let Q be a
moving point on C. If r1, r2, and r3 are real numbers in (0, 1), we let

OQ =
√
x0(t)2 + y0(t)2,

OE =
√
e1(t)2 + e2(t)2,

OD =
√
d1(t)2 + d2(t)2,

and
−−−→
OM1 =

[
x1(t)
y1(t)

]
=

r1 ·OQ
r1OQ+ r2OE + r3OD

−−→
OE +

r2 ·OE
r1OQ+ r2OE + r3OD

−−→
OD

+
r3 ·OD

r1OQ+ r2OE + r3OD

−→
OQ.

In addition, for n ∈ Z+, we consider
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OE + r3OD

−−→
OE +

r2 ·OE
r1OQn + r2OE + r3OD

−−→
OD

+
r3 ·OD

r1OQn + r2OE + r3OD

[
xn(t)
yn(t)

]
, (14)
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where Qn is a moving point on (xn(t), yn(t)) , for n = 0, 1, .... If {Mn(t)}∞n=1 converges, then
{Mn (t)}∞n=1 converges uniformly to the curve F (t), which satisfies the solutions (15) and
(16) for t ∈ [0, 2π] . Furthermore, the real solutions of the parametric curve is a subset of
limn→∞ {Mn (t)}∞n=1 .We remark that the coeffi cient r3 ∈ (0, 1) will not affect where {Mn (t)}∞n=1
will converge to.

Remark: Unlike the Theorem (8), where we make use of a decreasing sequence of closed
convex sets, in this Theorem (10), we have two moving points on the curves D and E respec-
tively. We may not have a decreasing sequence of closed convex sets, therefore, the assumption
of {Mn(t)}∞n=1 being convergent is needed. We shall explore ways of relaxing this condition in
future paper.

Proof: We assume
[
xn+1(t)
yn+1(t)

]
converges to a real solution of

[
p (t)
q (t)

]
, where t ∈ [0, 2π] .

We see

[
p (t)
q (t)

]1− r3 ·OD

r1

√
p (t)2 + q (t)2 + r2OE + r3OD


=

r1

√
p (t)2 + q (t)2

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

−−→
OE +

r2 ·OE

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

−−→
OD.

[
p (t)
q (t)

] r1

√
p (t)2 + q (t)2 + r2OE

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

=


r1
√
p(t)2+q(t)2

r1
√
p(t)2+q(t)2+r2OE+r3OD

(
e1(t)
e2(t)

)
+ r2OE

r1
√
p(t)2+q(t)2+r2OE+r3OD

(
d1(t)
d2(t)

)


It amounts to find the real solutions for p (t) and q (t) from the two equations (15) and (16)
in terms of t, when r1, r2, r3 are given.[

p (t)
q (t)

]
=

r1

√
p (t)2 + q (t)2

r1

√
p (t)2 + q (t)2 + r2

√
e1(t)2 + e2(t)2

(
e1(t)
e2(t)

)
(15)

+
r2
√
e1(t)2 + e2(t)2

r1

√
p (t)2 + q (t)2 + r2

√
e1(t)2 + e2(t)2

(
d1(t)
d2(t)

)
.� (16)

In the next Example, we shall see how the graphs of the square distance functions can be
used as a conjecture if the convergence of {Mn (t)}∞n=1 is uniform. Secondly, we will see how the
real solutions from solving for p (t) and q (t) computationally from the two equations (15) and

(16) can serve as partial solution for the parametric curve F (t) =
[
p (t)
q (t)

]
under the uniform

convergence of limn→∞ {Mn (t)}∞n=1 .
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Example 11 Let C be the given ellipse curve [x0(t), y0(t)] = [a cos t, b sin t] , D be the closed
curve of

[d1(t), d2(t)] = [(sin 2t+ 2) cos t, (sin 2t+ 2) sin t] ,

and E be the closed curve of

[(a− cos(bt) cos t+ 1, (a− cos(bt) sin t] .

Let Q be a moving point on C. We are interested in the plot of limn→∞Mn (t) , see (14), when
n→∞.

1. We consider r1 = 1
2
, r2 =

1
3
, r3 =

1
6
, a = 5, b = 3. In addition, it is also worth noting that

the square distance function

fn(t) = (xn(t)− xn−1(t))2 + (yn(t)− yn−1(t))2

converges to 0 rather quickly in this case. We depict the pair functions {f4(t), f5(t)} and
f5(t) in the following Figures 6(a) and 6(b) respectively. Consequently, we may use these
observations to conjecture that the convergence of {Mn (t)}∞n=1 is uniform.

Figure 6(a). Plots of
{f4(t), f5(t)} . Figure 6(b). Plot of f5(t).

2. If we plot the real solutions of the branch 1, out of four branches when solving two

equations (15) and (16), it coincides ‘almost’exactly with that of M5 (t) =

[
x5(t)
y5(t)

]
, see

Figure 7 below, which we cannot tell them apart. See Supplementary Electronic Material
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[S1].

Figure 7. Graph of M5(t).

Exercise: We invite readers to explore that the plot of the curve limn→∞Mn (t) , see (10),
is invariant with the choice of curve C = [x0(t), y0(t)].

3 Uniform Convergence of an Iterated Sequence in R3

3.1 The limit of a uniform convergence is of rank one

We should call a point, a curve and a surface in R3 to be of rank 1, rank 2 and rank 3
respectively. We shall discuss how the limit of a uniform convergence of an iterated sequence
that will result in a point, a curve and a surface in R3.

Theorem 12 Let S be a given closed surface [x0(u1, u2), y0(u1, u2), z0 (u1, u2)], and the point
A = (p1, q1, w1) is fixed and is not on the surface S. For r1 and r2 being two distinct real numbers
in (0, 1), we let

−−−→
OM1 =

 x1(u1, u2)
y1(u1, u2)
z1(u1, u2)

 = r1 ·OQ
r1OQ+ r2OA

−→
OA+

r2 ·OA
r1OQ+ r2OA

−→
OQ,

where Q is a moving point on S, and the locusM1 is described in (x1(u1, u2), y1(u1, u2), z1(u1, u2)).
Now for n ∈ Z+, we consider

−−−−→
OMn+1 =

 xn+1(u1, u2)
yn+1(u1, u2)
zn+1(u1, u2)

 = r1 ·OQn
r1OQn + r2OA

−→
OA+

r2 ·OA
r1OQn + r2OA

 xn(u1, u2)
yn(u1, u2)
zn(u1, u2)

 ,
where Qn is a moving point on [xn(u1, u2), yn(u1, u2), zn(u1, u2)]. Then

−−−−−−−−→
OMn(u1, u2) →

−→
OA as

n → ∞ uniformly,
−−−−−−−−−−−−−−−−−−→
Mn (u1, u2)Mn−1 (u1, u2) converges uniformly to 0, and {Mn (u1, u2)}∞n=1

converges uniformly to the point A for all for all (u1, u2) ∈ [0, 2π]× [0, 2π].
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Proof: The convergence of {Mn (u1, u2)}∞n=1 follows directly from the corresponding 2D
Theorem (5), which we omit here. �

Example 13 Let S be the given closed surface

[x0(u1, u2), y0(u1, u2), z0(u1, u2)] = [5 cos(u1) sin(u2), 4 sin(u1) sin(u2), 3 cos(u2)],

and the point A = (1, 2, 3) be fixed. For r1 and r2 ∈ (0, 1) , and

−−−−→
OMn+1 =

 xn+1(u1, u2)
yn+1(u1, u2)
zn+1(u1, u2)

 = r1 ·OQn
r1OQn + r2OA

−→
OA+

r2 ·OA
r1OQn + r2OA

 xn(u1, u2)
yn(u1, u2)
zn(u1, u2)

 .
Then {Mn (u1, u2)}∞n=1 converges uniformly to the point A.

We depict the convergence for r1 = 1
3
and r2 = 2

3
, and the plots of

{−−−→
OM2,

−−−→
OM3,

−−−→
OM4,

−−−→
OM5

}
and the point A = (1, 2, 3) in Figure 8:

Figure 8. 3D convergence to a
point.

It is natural to observe that the uniform convergence of {Mn (u1, u2)}∞n=1 to the point A will
be invariant when starting with difference surfaces, which we demonstrate this using difference
closed surfaces next.

Example 14 If we replace S to be the closed surface of S2 = [cos(u1) sin(u2), sin(u1) cos(u2), cos(u2)+
1], and the point A = (1, 2, 3) be fixed. Furthermore, we pick r1 = 1

3
, and r2 = 2

3
, we depict the

nested plots of {M2 (u1, u2) ,M3 (u1, u2) ,M4 (u1, u2) ,M5 (u1, u2)} and the point A = (1, 2, 3)
below on Figure 9(a) . The plot of M5 (u1, u2) and the point A (shown in red) is depicted in the
Figure 9(b). We also plot the Figure 8 together with Figure 9(a) in Figure 9(c) below, which
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we can see both sequences of closed surfaces converge to the same point A.

Figure 9(a). Sequence of
surfaces converge to the point

A.

Figure 9(b). The plots of
M5 (u1, u2) and A.

Figure 9(c). Convergences do
not depend on the original

surface C.

Exercise: If we use the same point A, and same coeffi cients r1 = 1
3
and r2 = 2

3
, but use

the surface S3 of

 2 cos(u1) sin(u1) cos(u1) sin(u2) + 12 cos(u1) sin(u1) sin(u1) sin(u2) + 2
2 cos(u1) sin(u1) cos(u2)− 3

 as expected, we should see another
sequence of surfaces converge uniformly to the same point A (shown in red in Figure 10).

Figure 10. Convergence of
S3 and A.

3.2 The limit of a uniform convergence is of rank two

Now we consider the locus of two moving vectors and with two fixed vectors in R3.

Theorem 15 Let C be a given closed non-zero surface [x0(u, v), y0(u, v), z0 (u, v)], A = (p1, q1, w1), B =
(p2, q2, w2) be two distinct points. LetD be the space curve lying on the surface of (x2(u, v), y2(u, v), z2(u, v))
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when either u1 or u2 being kept as a constant. Suppose v = v0, for r1, r2, r3 and r4 ∈ (0, 1) , we
let

−−−→
OM1 =

 x1(u, v)
y1(u, v)
z1(u, v)

 = r1 ·OQ
r2OA+ r3OB + r1OQ+ r4OD

−→
OA+

r2 ·OA
r2OA+ r3OB + r1OQ+ r4OD

−−→
OB

+
r3 ·OB

r2OA+ r3OB + r1OQ+ r4OD

−−−−−−−→
OD (u, v0) +

r4 ·OC
r2OA+ r3OB + r1OQ+ r4OD

−→
OQ,

where Q is a moving point on C, and the locus M1 is described in (x1(u, v), y1(u, v), z1(u, v)).
Now for n ∈ Z+, if

−−−→
OMn =

 xn(u, v)
yn(u, v)
zn(u, v)


=

r1 ·OQn
r2OA+ r3OB + r1OQn + r4OD

−→
OA+

r2 ·OA
r2OA+ r3OB + r1OQn + r4OD

−−→
OB

+
r3 ·OB

r2OA+ r3OB + r1OQn + r4OD

−−−−−−−→
OD (u, v0)

+
r4 ·OC

r2OA+ r3OB + r1OQn + r4OD

 xn−1(u, v)
yn−1(u, v)
zn−1(u, v)

 , (17)

where Qn is a moving point on [xn(u, v), yn(u, v), zn(u, v)]. If
−−−−−−→
Mn (u, v) converges, then

−−−−−−→
Mn (u, v)

converges uniformly to a space curve spanned by
−−→
OA,

−−→
OB, and

−−−−−−−→
OD (u, v0), where u ∈ [0, 2π] .

Proof: The proof is standard which we omit here.
Now we consider a 3D Locus of three moving vectors and one fixed vector as follows, which

we leave the proof to the readers.

3.3 The limit of a uniform convergence is of full rank

Now, we consider a scenario when the limit of a uniform convergence {Mn (u, v)} is another
two variables 3D surface.

Theorem 16 Let C be a given closed non-zero surface [x0(u, v), y0(u, v), z0 (u, v)]. Let D,E
and F be three distinct surfaces of (x2(u, v), y2(u, v), z2(u, v)), (x3(u, v), y3(u, v), z3(u, v)), and
(x4(u, v), y4(u, v), z4(u, v)) respectively. For r1, r2, r3 and r4 ∈ (0, 1) , we let

−−−→
OM1 =

 x1(u, v)
y1(u, v)
z1(u, v)

 = r1 ·OQ
r2OF + r3OE + r1OQ+ r4OD

−−−−−−→
OF (u, v)

+
r2 ·OF

r2OF + r3OE + r1OQ+ r4OD

−−−−−−→
OE (u, v)

+
r3 ·OE

r2OF + r3OE + r1OQ+ r4OD

−−−−−−→
OD (u, v)

+
r4 ·OD

r2OF + r3OE + r1OQ+ r4OD

−→
OQ,
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where Q is a moving point on C, and the locus M1 is described in (x1(u, v), y1(u, v), z1(u, v)).
Now for n ∈ Z+, if

−−−→
OMn =

 xn(u, v)
yn(u, v)
zn(u, v)


=

r1 ·OQn
r2OF + r3OE + r1OQn + r4OD

−−−−−−→
OF (u, v) +

r2 ·OF
r2OF + r3OE + r1OQn + r4OD

−−−−−−→
OE (u, v)

+
r3 ·OE

r2OF + r3OE + r1OQn + r4OD

−−−−−−→
OD (u, v)

+
r4 ·OD

r2OF + r3OE + r1OQn + r4OD

 xn−1(u, v)
yn−1(u, v)
zn−1(u, v)

 ,
where Qn is a moving point on [xn(u, v), yn(u, v), zn(u, v)], and if

−−−−−−→
Mn (u, v) converges, then−−−−−−→

Mn (u, v) converges uniformly to the surface that is generated by
−−−−−−→
OD (u, v),

−−−−−−→
OE (u, v) and

−−−−−−→
OF (u, v),

where u ∈ [0, 2π] , and v ∈ [0, π] .

Proof: We assume

 xn+1(u, v)
yn+1(u, v)
zn+1(u, v)

→ F ∗ =

 p (u, v)
q (u, v)
w (u, v)

 , we denote it as
 p
q
w

 in brevity,
then the norm of the vector,

∥∥∥∥∥∥
 xn+1(u, v)
yn+1(u, v)
zn+1(u, v)

∥∥∥∥∥∥, converges to ‖F ∗‖ = √p2 + q2 + w2, and we

have (
1− r4 ·OD

r2OF + r3OE + r1 ‖F ∗‖+ r4OD

) p
q
w


=

r1 ‖F‖
r2OF + r3OE + r1 ‖F ∗‖+ r4OD

−→
OF

+
r2OF

r2OF + r3OE + r1 ‖F ∗‖+ r4OD

−−→
OE

+
r3 ·OE

r2OF + r3OE + r1 ‖F ∗‖+ r4OD

−−→
OD

 p
q
w


=

(
r2OF + r3OE + r1 ‖F ∗‖+ r4OD

r2OF + r3OE + r1 ‖F ∗‖

)( r1‖F ∗‖
r2OF+r3OE+r1‖F ∗‖+r4OD

−→
OF

+ r2OF
r2OF+r3OE+r1‖F ∗‖+r4OD

−−→
OE + r3·OE

r2OF+r3OE+r1‖F ∗‖+r4OD
−−→
OD

)

=

(
r1 ‖F ∗‖

r2OF + r3OE + r1 ‖F ∗‖

)
−→
OF +

(
r2OF

r2OF + r3OE + r1 ‖F ∗‖

)
−−→
OE

+

(
r3 ·OE

r2OF + r3OE + r1 ‖F ∗‖

)
−−→
OD. (18)
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4 Conclusions

We first remark that there are many other areas that readers can extend from this paper. For
example, we assumed that in several places that the sequence

−−−−−−→
Mn (u, v) converges first before

we state the conclusions, one can make use of Cauchy Criterion for uniform convergence to
search for suffi cient conditions for a sequence

−−−−−−→
Mn (u, v) being convergent. In addition, we can

extend the plots of convex combinations to the plots of conical combinations both in 2D and
3D. Finally, one can talk about the applications of the uniform convergence of sequences of
parametric equations, and infinite series of parametric equations. Nevertheless, in this paper,
we have seen some interesting graphics that resulted from sequence of convex combinations of
vectors in 2D and 3D. Also, readers should have gained some insights how we can comprehend
a complex concept of uniform convergence of sequences of parametric curves or surfaces. As
a reminder, we indeed extended a simple college exam practice problem on locus into various
interesting exploratory activities, both in 2D and 3D settings. Consequently, these exploratory
activities have led to many interesting areas of computer graphics by integrating mathematical
knowledge in Multivariable Calculus, Advanced Calculus, and Linear Algebra. We thus propose
that a math curriculum should include proper components of exploration with the help of
technological tools, especially where real life applications can be found.
It is common sense that teaching to a test can never promote creative thinking skills, it could

even lose potential students who might pursue mathematics related fields in the future. We
know that addressing the importance and timely adoption of technological tools in teaching,
learning and research can never be wrong. Access to technological tools has motivated us
to rethink how mathematics can and should be presented more interestingly and also how
mathematics can be made a more cross disciplinary subject. There is no doubt that evolving
technological tools have helped learners to discover mathematics and to become aware of its
applications.

5 Acknowledgements

Author would like to express sincere thanks to Harald Pleym of Norway for writing sequence
of plots using Maple [1].

6 Supplementary Electronic Materials

[S1] A Maple file for Example 11:

https : //atcm.mathandtech.org/EP2023/invited/22003/ATCM2023.mw

References

[1] Maple: A product of Maplesoft, see http://maplesoft.com/.

[2] Convex combination: https://en.wikipedia.org/wiki/Convex_combination.

[3] https://en.wikipedia.org/wiki/Homothety

96

The Electronic Journal of Mathematics and Technology, Volume 18, Number 2, ISSN 1933-2823



[4] Yang, W.-C. Locus, Parametric Equations and Innovative Use of Technological Tools (pp.
page 120-133). Proceedings of the 21st ATCM, the electronic copy can be found at this URL:
https://atcm.mathandtech.org/EP2016/invited/4052016_21300.pdf, ISBN:978-0-9821164-
9-4 (hard copy), ISSN 1940-4204 (online version), Mathematics and Technology LLC.

[5] Yang, W.-C. From Static Locus Problems to Exploring Mathematics with Technological
Tools (pp. page 67-88). The Electronic Journal of Mathematics and Technology, Volume 11,
Number 2, ISSN 1933-2823, Mathematics and Technology LLC.

[6] Yang, W.-C. Graphs of Uniform Convengence on Iteration of Loci generated by Special
Convex Combinations of Curves and Surfaces, the Electronnic Proceedings of the 28th Asian
Technology Conference in Mathematics (ATCM 2023), ISSN 1940-4204, soft copy can be
obtained from http://atcm.mathandtech.org/EP2023/invited/22003.pdf, Mathematics and
Technology LLC.

97

The Electronic Journal of Mathematics and Technology, Volume 18, Number 2, ISSN 1933-2823


	Introduction and Motivation
	2D iterations 
	One curve and one fixed vector
	One curve and two fixed vectors
	Generating sequence of shrinking curves due to convex combinations 
	Uniform convergence using geometric constructions
	Iterations on one curve, and two vectors on two respective curves

	Uniform Convergence of an Iterated Sequence in R3
	The limit of a uniform convergence is of rank one
	The limit of a uniform convergence is of rank two
	The limit of a uniform convergence is of full rank

	Conclusions
	Acknowledgements
	Supplementary Electronic Materials

